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Abstract. This work aims at defining an extension of a competitive method for
matching correspondences in stereoscopic image analysis. The method we ex-
tended was proposed by Venkatesh, Y.V. et al where the authors extend a Self-
Organizing Map by changing the neural weights updating phase in order to solve
the correspondence problem within a two-frame area matching approach and pro-
ducing dense disparity maps. In the present paper we have extended the method
mentioned by adding some details that lead to better results. Experimental studies
were conducted to evaluate and compare the solution proposed.
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1 Introduction

Stereoscopic image analysis deals with the reconstruction of the three-dimensional
shape of objects in a physical scene from multiple 2-D images captured from differ-
ent viewpoints [1, 2]. The accuracy of the overall reconstruction process depends on the
accuracy with which the correspondence problem is solved. It concerns the matching
of points or other kinds of primitives in two (or more) images such that the matched
image points are the projections of the same point in the scene. The disparity map ob-
tained from the matching stage is then used to compute the 3D positions of the scene
points given the imaging geometry. A substantial amount of work has been done on
stereo matching usually explored using area-based and feature-based approaches. Other
types of stereo matching methods such as Bayesian, phase-based, wavelet-based and
diffusion-based techniques have also been developed [3]. Despite important achieve-
ments, the high accuracy demand in diversified application domains such as object
recognition, robotics and virtual reality [4] create the premise for further investigation.
In previous works we investigated the potentialities of Neural Networks in Stereomatch-
ing basing our solutions on supervised learning [5, 6].

Motivated by the acknowledged biological plausibility of unsupervised neural learn-
ing, Venkatesh et al. in [7] explored the potential of Self Organizing Maps (SOM) to
solve the correspondence problem conceived as imitation of the stereo-perception abil-
ity of the human visual system (HVS). In order to take care of stereo constraints, the
authors introduced certain modifications within the original SOM model giving rise to
the modified SOM (MSOM) model in which the estimation of the disparity map from
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a stereo pair of images is obtained by computing the amount of deformation required
to transform it into the other image. As seen in our experiments, the MSOM model
has many special properties and potentialities, but also highlight limitations especially
in dealing with occluded areas. Proceeding from these results, in this paper we pro-
posed an extension of the MSOM for the estimation of stereo disparity. The salient
main aspects of the solution proposed are the extension of matching primitives from
pixel intensity to a weighted composition of RGB values, the definition of a contextual
strategy within the matching cost computation task and finally the explicit handling of
occlusions and direct processing within occlusion edges. The improved MSOM model
was experimentally evaluated basing on the analysis of well known test images includ-
ing data with true disparity maps. The aim of the experiment is twofold: to measure the
performances of the model as functions of the most important parameters, and to com-
pare performances with those obtained by well known approaches recently published
in literature.

2 The MSOM model

This section describes the MSOM model proposed in [7] where the authors extend a
Self-Organizing Map (SOM) neural network [8] by changing the neural weights updat-
ing phase. The base idea of the model MSOM is the following: the matching between
pixels of IL and IR, the left or reference image and the right or matching image in the
stereo pair, is expressed in terms of the winning neurons in the network MSOM.

The Algorithm 1 summarize the MSOM method through three main steps: initial-
ization, winner neuron selection and weights update. During initialization, the neu-
rons in the competitive layer are initialized with position and gray level of the pix-
els in the reference image IL. During learning the input to the network is a randomly
selected pixel IR(m,n) of the matching image. The learning phase proceeds search-
ing the global minimum of a ”Euclidean distance” between the input vector and the
weights of the neurons (see equation (1)). If the coordinates of the winning neuron are
(ϕr, ϕc), then we expect a matching between pixels IL (ϕr, ϕc) and IR (m,n). Finally,
the weights update step, where only the first two components w1 and w2 of each neu-
ron are updated (see equation (2)). From the trained MSOM model we can build the
two disparity maps dhor and dver of horizontal and vertical disparities respectively. In
particular from the equation (4) is possible to construct the disparity values using the
weights w1 and w2 of each neuron.

3 The StereoMSOM model

The method proposed here, the StereoSOM, extends the MSOM algorithm with the
main aims to speed up the convergence and increase the precision of the computed dis-
parity map. The complete description of StereoSOM model is showed in Algorithm 2.

To reduce the convergence time of the StereoSOM algorithm we adapted the al-
gorithm MSOM to work with epipolar images and confined the search for the corre-
sponding pixel in a limited area {n + dmin, . . . , n + dmax} (see the requirements of
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Algorithm 1 - The MSOM algorithm
Require: To selection a reference image IL and the corresponding matching image IR having

dimension W ×H;
Require: to create a matrix of neurons nrc = [wrc1 , w

rc
2 , w

rc
3 ] where r = 1 . . . H and c =

1 . . .W ;
Require: ∀r and ∀c initialize neurons nrc: wrc1 = r, wrc2 = c and wrc3 = IL (r, c);
1: for i = 1 to Iterations do
2: randomly extract a pixel IR (m,n), m = 1 . . . H and n = 1 . . .W ;
3: construct the corresponding input pattern (imn1 , imn2 , imn3 ) where imn1 = m, imn2 = n and

imn3 = IR (m,n);
4: discover the coordinates (ϕr, ϕc) of the winning neuron as follows:

(ϕr, ϕc) = arg min
r∈{1,...,H},c∈{1,...,W}

vuut 3X
k=1

(wrck − imnk )2 (1)

5: update the weights of neurons nrc as follows:
6: for r = 1 to H and c = 1 to W do
7: for k = 1 to 2 do
8: update the weight wrck of neuron nrc as follows:

wrck ← wrck + hk (r, c) gk (r, c)
“
i
(r−(ϕr−m))(c−(ϕc−n))
k − wrck

”
(2)

where

hk (r, c) = η exp

„
− (r − ϕr)2 + (c− ϕc)2

2σ2
h

«
(3)

and gk (r, c) = exp

„
− (wrc3 −w

ϕrϕc
3 )2

2σ2
g

«
9: end for

10: end for
11: end for
12: compute horizontal and vertical disparity maps:(

dhor (r, c) = c− wrc2
dver (r, c) = r − wrc1

(4)
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Algorithm 2 and equation (5)). Moreover the learning algorithm of our method is di-
vided into two distinct phases that we called the ordering phase and the tuning phase,
characterized simply by different values of the configuration parameters. The parame-
ters setting in the ordering phase leads to an approximate solution in a very short time
leaving to the subsequent tuning phase its refinement. In particular the tuning phase
improves the first rough calculation, updating the neural weights with small entities.

The StereoSOM model considers as matching primitives the color attributes. For
color images encoded in RGB, color information will be presented in input to the net-
work with ircC1

= R, ircC2
= G, ircC3

= B. The overall matching primitives are processed
within the network weighting the relative importance of the individual components by
means of appropriate weights ρk (see equation (5)).

Within the weight updating procedure, an explicit definition of the winner neuron’s
neighborhood is included. In particular the new function defined in (7) depends from
three parameters α, β e nsize considering that the function θ (r, c) has the following
form:
θ (r, c) = α exp

(
− (r−ϕr)2+(c−ϕc)2

2σ2
h

)
with σ2

h = n2
size

−2 ln( βα ) . Assigning a value to these

three parameters means that only an area of size (2nsize + 1)2 around the winning
neuron will be updated.

The following subsections describe two relevant modifications of the MSOM al-
gorithm. The first one concerns the introduction of a new strategy for the search of
winning neuron called Search Eye (SE), while the second, called Quality of Search
(QS) concerns the management of occluded areas.

3.1 Search Eye

The winning neuron strategy was updated basing on a moving window procedure: insted
of comparing only the weights of the candidate neuron wrc, an overall set of weights
within a window is considered in the searching strategy (see ( 9)).

It is plausible to think that groups of neurons belonging to a single object on the
scene have similar intensity and then similar disparities; adjusting the search window to
neurons belonging to a single object will then improve the quality of the search process.
The winning neuron search function is formalized as follows:

(ϕr, ϕc) =

m, arg min
c∈{1,...,W}

ξ∑
∆r=−ξ

ξ∑
∆c=−ξ

√
ρ1 (wrc1 − imn1 )2 + S(r, c,∆r,∆c)

(9)

with S(r, c,∆r,∆c) =∑K+1
k=2

[
gs (r +∆r, c+∆c) ρk

(
w

(r+∆r)(c+∆c)
k − i(m+∆r)(n+∆c)

k

)2
]

and gs (r, c) = exp
(
−
PK
k=1(ircCk−i

mn
Ck

)2

2σ2
s

)
3.2 Quality of Search

In order to deal with occlusions and false matching the StereoMSOM algorithm imple-
ments a Bidirectional Matching strategy. In the case in which the backward matching,
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Algorithm 2 - The proposed StereoSOM algorithm for epipolar images
Require: To selection a reference image IL and the corresponding matching image IR having

dimension W ×H;
Require: to create a matrix of neurons nrc =

ˆ
wrc1 , w

rc
C1 . . . , w

rc
CK

˜
for generic images having

K channels and where r = 1 . . . H and c = 1 . . .W ;
Require: ∀r and ∀c initialize neurons nrc: wrc1 = c, and wrcCk = IL (r, c, Ck);
1: for i = 1 to Iterations do
2: randomly extract a pixel IR (m,n);
3: construct the corresponding input pattern

`
imn1 , imnC1 , . . . , i

mn
CK

´
where imn1 = n;

4: discover the coordinates (ϕr, ϕc) of the winning neuron as follows:

(ϕr, ϕc) =

0@m, arg min
c∈{n+dmin,...,n+dmax}

vuutK+1X
k=1

ˆ
ρk (wrck − imnk )2

˜1A (5)

5: update the weights of neurons nrc as follows:
6: for r = ϕr − nsize to ϕr + nsize and r = ϕc − nsize to ϕc + nsize do
7: update the weight wrc1 of neuron nrc as follows:

wrc1 ← wrc1 + h (r, c) g (r, c)
“
i
r(c−(ϕc−n))
1 − wrc1

”
(6)

where

h (r, c) =

8><>:
θ (r, c) if β < θ (r, c) < 1

1 if θ (r, c) ≥ 1

0 if θ (r, c) ≤ β
(7)

and g (r, c) = exp

 
−
PK
k=1

“
wrcCk

−wϕrϕc
Ck

”2
2σ2
g

!
8: end for
9: end for

10: to compute the disparity map:

dhor (r, c) = c− wrc1 (8)
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from IR to IL fails, the algorithm nullify the weight updating and continue with the
next input.

4 Experiments

The experimental activity was supported by test data available on the Web at http:
//vision.middlebury.edu/stereo. We selected four test data sets named
Tsukuba, Venus, Teddy and Cones including stereo image pairs and true disparity (see
Fig. 1).

Among the quality measures proposed by Scharstein and Szelinski in their pa-
pers [3, 9] we adopted the percentage of bad matching pixels between the computed
disparity map dC(x, y) and the ground truth map dT (x, y):

PBPδd = (
1
N

∑
(|dC(x, y)− dT (x, y)| > δd)) (10)

reference image ground truth reference image ground truth

(a) (b)

(c) (d)

Fig. 1. Reference image and true disparity map of (a) Cones, (b) Teddy, (c) Venus and (d) Tsukuba
test.

In this experiment the proposed StereoSOM algorithm was configured with the
following set of parameters tuned with a trial and error procedure: for the ordering
phase {ξ = 5, σ2

s = 700, g(r, c) = 1, ρ1 = 0.001, ρ2 = · · · = ρK+1 = 1, nsize =
[80, 10], α = 1, β = 1} and for the tuning phase {ξ = 5, σ2

s = 700, σ2
g = 80, ρ1 =

0.05, ρ2 = · · · = ρK+1 = 1, nsize = 20, α = [6, 1], β = [0.5, 0.005]}. The parameter
expressed as [a, b] vary linearly from a to b during the iterations.

Fig. 2 shows the final disparity after 10000 iterations of ordering phase and 500000
iterations of tuning. As regard the execution time, the average time over all the four
dataset considered is approximatively 100 sec. with 50000 iterations of tuning, running
the algorithm over a laptop with an AMD 1800 MHz processor.
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Fig. 2. Best disparity maps of the four dataset considered obtained by applying the proposed
StereoSOM algorithm.

Fig. 3. Rank of StereoSOM algorithm obtained with the Middlebury Stereo Evaluation frame-
wok. The comparison was made with the results of 54 different algorithms, already stored in the
database of the framewok.

The disparity maps obtained (Fig. 2) were submitted to the Middlebury Stereo
Evaluation tool, available on the Web at http://vision.middlebury.edu/
stereo/eval, computing the PBPδd measure over the whole image (ALL), in non
occluded regions (NOCCL) and in depth discontinuity regions (DISC). The evaluation
tool automatically compared other stereo matching algorithms whose performances are
available on the same Web site.

The Fig. 3 shows the rank of our algorithm compared with the results of 54 dif-
ferent algorithms. Observing this figure we see a sharp rise in our ranking algorithm
varying the threshold δd. This behavior leads us to believe that the proposed algorithm
is particularly suitable in the management of disparity maps with real values. In order
to improve furtherly the performance of the StereoSOM algorithm new solutions have
to be investigated for managing discontinuity areas.

The complete set of results obtained is shown in Table 1. The StereoSOM algorithm
shows a globally satisfactory competitive behavior, even if it did not prevail on some
of the algorithms involved in the comparison. The comparison with the MSOM model
was done using an our implementation of the algorithm and evaluating the disparity
map through the same tool available from the Middlebury website. The comparison
result is available on the Table 2.
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Table 1. Results obtained by StereoSOM algorithm in terms of PBPδd after 10000 iterations of
ordering.

Test image δd NOCCL ALL DISC Iterations NOCCL ALL DISC Iterations

Tsukuba 0.5 19.99 20.52 32.26 50000 15.20 15.82 29.33 500000
0.75 17.35 17.77 28.44 13.28 13.75 26.29

1 3.38 3.76 14.54 3.80 4.12 15.16
1.5 2.79 3.09 12.09 3.24 3.50 13.00

2 2.22 2.47 9.44 2.52 2.73 9.99

Venus 0.5 6.78 7.43 19.65 50000 5.12 5.83 18.98 500000
0.75 1.66 2.22 12.35 1.27 1.75 11.03

1 0.98 1.42 10.31 0.83 1.19 9.24
1.5 0.66 0.99 7.53 0.53 0.83 6.23

2 0.53 0.79 6.20 0.44 0.65 5.09

Teddy 0.5 17.14 23.58 34.36 50000 16.24 22.68 32.50 500000
0.75 12.50 18.49 26.28 11.94 17.92 24.95

1 10.41 15.73 22.39 10.26 15.54 21.30
1.5 7.77 12.06 17.42 8.02 12.20 16.26

2 6.15 9.82 13.80 6.30 9.89 12.47

Cones 0.5 12.3 18.74 26.89 50000 10.9 17.25 22.61 500000
0.75 7.96 14.34 20.04 6.76 12.99 16.30

1 6.31 12.40 16.57 5.35 11.33 13.61
1.5 4.91 10.51 13.32 4.15 9.71 11.10

2 4.11 9.35 11.35 3.46 8.65 9.30

Table 2. Results obtained by MSOM algorithm in terms of PBPδd after 10000 iterations of
ordering and 1000000 iterations of tuning.

Test image δd NOCCL ALL DISC Test image δd NOCCL ALL DISC

Tsukuba 0.5 43.39 43.9 60.5 Teddy 0.5 33.76 38.72 54.82
0.75 39.94 40.41 56.61 0.75 26.66 31.54 44.7

1 22.97 23.6 45.9 1 23.62 28.11 39.72
1.5 19.3 19.88 38.3 1.5 20.6 24.29 33.71

2 9.16 9.68 27.38 2 18.75 22.07 29.73

Venus 0.5 31.57 32.36 53.98 Cones 0.5 40.56 44.95 62.9
0.75 20.66 21.48 42.45 0.75 32.44 37.24 54.35

1 15.17 15.91 36.24 1 27.93 32.83 48.66
1.5 10.93 11.58 29.3 1.5 22.84 27.73 41.31

2 7.97 8.46 22.82 2 19.6 24.37 35.67
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5 Conclusions and Future Works

Our objective in this study was to investigate an extension of the existing method
MSOM, aimed at solving the correspondence problem within a two-frame area match-
ing approach and producing dense disparity maps. The new StereoSOM model was
tested on standard data sets and compared with several stereo algorithms available in
the Middlebury Web site. The proposed StereoSOM algorithm shows globally a satis-
factory competitive behavior. Salients aspects of our solution are the local processing
of the stereo images, the use of a limited set of directly available features and the appli-
cability without the image segmentation.

In future works we want to improve the behavior of the StereoSOM method in
discontinuities and occluded areas. Moreover a further investigation of the robustness
under non epipolar conditions will be investigated.
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